PRINSIP KERJA MEMORI
Jumlah kebutuhan RAM tergantung pada jenis program yang sedang berjalan. Setiap Operating System (OS) seperti Microsoft Windows menggunakan komponen, yang dikenal sebagai Virtual Memory Manager (VMM). Menjalankan program seperti instant messenger atau browser internet adalah mengaktifkan microprocessor komputer untuk memuat file dan dieksekusi ke RAM. Untuk program semacam itu biasanya diperlukan RAM 5 megabyte (5 MB). Microprocessor juga menggunakan Dynamic Link Libraries (DLL) yang memakai RAM pada kisaran 20-30 megabyte (20-30 MB).
Sejumlah pengguna komputer menjalankan lebih dari satu program secara bersamaan seperti saat melakukan browsing internet sambil mendengarkan musik, kadang-kadang program pengolah kata juga dijalankan. Semua ini menggunakan jumlah RAM yang tinggi. Jika Anda menggunakan kapasitas RAM lebih besar dari yang terpasang pada komputer, maka komputer menjadi lambat.
Untuk meningkatkan kecepatan komputer anda perlu meningkatkan kapasitas RAM. Sebelum melakukan hal itu anda harus mengetahui berapa besar RAM yang saat ini terinstall di komputer dan berapa besar kebutuhan RAM yang harus anda tambahkan. Untuk mengetahui besarnya RAM pada komputer anda dapat melakukannya dengan klik kanan pada My Computer dan pilih Properties. Pilih tab General maka berbagai informasi tentang komputer termasuk kapasitas RAM akan ditampilkan. Cara lain untuk mengetahui jumlah RAM yang sedang anda gunakan adalah dengan menekan tombol control alt delete untuk menuju ke Task Manager. Anda akan melihat jumlah RAM yang anda gunakan dalam tab process. Anda dapat menambahkan membuka program lain yang dibutuhkan sampai mendapatkan jumlah total RAM yang diperlukan. Setelah semua program yang anda perlukan terbuka maka anda dapat menghitung jumlah RAM yang anda perlukan.
Menambahkan RAM dapat menjadi alternatif yang lebih mudah dan lebih murah untuk meningkatkan kecepatan komputer. Selain menambahkan kapasitas RAM Anda dapat membeli harddisk eksternal, yang dapat berguna untuk mentransfer dan menyimpan file-file penting yang tidak sering digunakan. Usahakan hanya file-file yang sering digunakan saja yang tertanam dalam hardisk untuk menciptakan ruang yang lebih luas dalam hardisk anda yang dapat pula meningkatkan kecepatan komputer.
Pada saat kita menyalakan komputer, device yang pertama kali bekerja adalah Processor. Processor berfungsi sebagai pengolah data dan meminta data dari storage, yaitu Hard Disk Drive (HDD). Artinya data tersebut dikirim dari Hard Disk setelah ada permintaan dari Processor. Tapi prakteknya hal ini sulit dilakukan karena perbedaan teknologi antara Processor & Hard Disk. Processor sendiri adalah komponen digital murni, dan akan memproses data dengan sangat cepat (Bandwidth tertinggi P4 saat ini 6,4 GB/s dengan FSB 800MHz). Sedangkan Hard Disk sebagian besar teknologinya merupakan mekanis yang tentu cukup lambat dibandingkan digital (Bandwidth atau Transfer Rate HDD Serial ATA berkisar 150 MB/s). Secara teoritis kecepatan data Processor berkisar 46x lebih cepat disbanding HDD. Artinya, apabila Processor menunggu pasokan data dari HDD akan terjadi “BottleNeck” yang sangat parah.
Untuk mengatasi keadaan itu, diperlukan device Memory Utama (Primary Memory) atau disebut RAM. RAM merupakan singkatan dari Random Access Memory. RAM berfungsi untuk membantu Processor dalam penyediaan data “super cepat” yang dibutuhkan. RAM berfungsi layaknya seperti HDD Digital, karena seluruh komponen RAM sudah menggunakan teknologi digital. Dengan RAM, maka Processor tidak perlu menunggu kiriman data dari HDD. Saat ini RAM DDR2 mempunyai bandwidth 3,2 GB/s (PC400), agar tidak menganggu pasokan maka saat ini Motherboard menggunakan teknologi Dual Channel yang dapat melipatgandakan bandwidth menjadi 2x dengan memperbesar arsitektur menjadi 128- bit. Itu artinya, 2 keping DDR2 dalam mode Dual Channel dapat memasok data dalam jumlah yang pas ke Processor (3,2 GB/s x Dual Channel = 6,4 GB/s).
ALOKASI DATA DALAM MEMORI
Manajemen memori adalah kegiatan mengelola memori komputer, mengalokasikan memori untuk proses sesuai keinginan, menjaga alokasi ruang memori bagi proses sehingga memori dapat menampung banyak proses dan sebagai upaya agar pemogram atau proses tidak dibatasi kapasitas memori fisik di sistem komputer.
Fungsi manajemen memori antara lain :
- Mengelola informasi memori yang dipakai dan tidak dipakai.
- Mengalokasikan memori ke proses yang memerlukan.
- Mendealokasikan memori dari proses yang telah selesai.
- Mengelola swapping antara memori utama dan disk.
Manajemen Memori dibedakan menjadi dua :
- Manajemen Memori dengan swapping : manajemen memori dengan pemindahan proses antara memori utama dan disk selama eksekusi.
- Manajemen Memori tanpa swapping : manajemen memori tanpa pemindahan proses antara memori utama dan disk selama eksekusi.
Kondisi tanpa swapping, bisa dikondisikan sebagai berikut :
- Monoprogramming : sistem komputer hanya mengijinkan satu program/pemakai berjalan pada satu waktu.
- Multiprogramming dengan pemartisian statis : memori dibagi menjadi beberapa sejumlah partisi tetap.
Penukaran dan Alokasi Memori
- Penukaran : sebuah proses yang berada di dalam memori dapat ditukar sementara keluar memori ke sebuah penyimpanan sementara, dan kemudian dibawa masuk lagi ke memori untuk melanjutkan pengeksekusian.
- Alokasi Memori : sebuah fungsi fasilitas untuk memesan tempat secara berurutan alamat memori diberikan kepada proses secara berurutan dari kecil ke besar untuk tipe data dinamis (pointer)
Jenis Alokasi dari Memori antara lain :
- Single Partition Allocation / Sistem Partisi Tunggal : alamat memori yang akan dialokasikan untuk proses adalah alamat memori pertama setelah pengalokasian sebelumnya.
- Multiple Partition Allocation / Sistem Partisi Banyak : Banyak: sistem operasi menyimpan informasi tentang semua bagian memori yang tersedia untuk dapat diisi oleh proses-proses (disebut lubang).
Permasalahan Alokasi Memori :
- First fit : Mengalokasikan lubang pertama ditemukan yang besarnya mencukupi. Pencarian dimulai dari awal.
- Best fit : Mengalokasikan lubang dengan besar minimum yang mencukupi permintaan.
- Next fit : Mengalokasikan lubang pertama ditemukan yang besarnya mencukupi. Pencarian dimulai dari akhir pencarian sebelumnya.
- Worst fit : Mengalokasikan lubang terbesar yang ada
Metode yang paling sederhana dalam mengalokasikan memori ke proses-proses adalah dengan cara membagi memori menjadi partisi tertentu. Secara garis besar, ada dua metode khusus yang digunakan dalam membagi-bagi lokasi memori:
1. Alokasi partisi tetap (Fixed Partition Allocation) yaitu metode membagi memori menjadi partisi yang telah berukuran tetap. Kriteria-kriteria utama dalam metode ini antara lain:
- Alokasi memori: proses p membutuhkan k unit memori.
- Kebijakan alokasi yaitu "sesuai yang terbaik": memilih partisi terkecil yang cukup besar (memiliki ukuran = k).
- Fragmentasi dalam (Internal fragmentation) yaitu bagian dari partisi tidak digunakan.
- Biasanya digunakan pada sistem operasi awal (batch).
- Metode ini cukup baik karena dia dapat menentukan ruang proses; sementara ruang proses harus onstan. Jadi sangat sesuai dengan partisi berukuran tetap yang dihasilkan metode ini.
- Setiap partisi dapat berisi tepat satu proses sehingga derajat dari pemrograman banyak multiprogramming dibatasi oleh jumlah partisi yang ada.
Setelah proses berakhir (selesai), partisi tersebut akan tersedia (available) untuk proses lain.
2. Alokasi partisi variabel (Variable Partition Allocation) yaitu metode dimana sistem operasi menyimpan suatu tabel yang menunjukkan partisi memori yang tersedia dan yang terisi dalam bentuk
a. Alokasi memori: proses p membutuhkan k unit memori.
b. Kebijakan alokasi :
- Sesuai yang terbaik: memilih lubang (hole) terkecil yang cukup besar untuk keperluan proses sehingga menghasilkan sisa lubang terkecil.
- Sesuai yang terburuk: memilih lubang terbesar sehingga menghasilkan sisa lubang.
- Sesuai yang pertama: memilih lubang pertama yang cukup besar untuk keperluan proses
d. Memori, yang tersedia untuk semua pengguna, dianggap sebagai suatu blok besar memori yang disebut dengan lubang. Pada suatu saat memori memiliki suatu daftar set lubang (free list holes).
e. Saat suatu proses memerlukan memori, maka kita mencari suatu lubang yang cukup besar untuk kebutuhan proses tersebut.
f. Jika ditemukan, kita mengalokasikan lubang tersebut ke proses tersebut sesuai dengan kebutuhan, dan sisanya disimpan untuk dapat digunakan proses lain.
Suatu proses yang telah dialokasikan memori akan dimasukkan ke memori dan selanjutnya dia akan bersaing dalam mendapatkan prosesor untuk pengeksekusiannya.
- Jika suatu proses tersebut telah selesai, maka dia akan melepaskan kembali semua memori yang digunakan dan sistem operasi dapat mengalokasikannya lagi untuk proses lainnya yang sedang menunggu di antrian masukan.
- Apabila memori sudah tidak mencukupi lagi untuk kebutuhan proses, sistem operasi akan menunggu sampai ada lubang yang cukup untuk dialokasikan ke suatu proses dalam antrian masukan.
- Jika suatu lubang terlalu besar, maka sistem operasi akan membagi lubang tersebut menjadi dua bagian, dimana satu bagian untuk dialokasikan ke proses tersebut dan satu lagi dikembalikan ke set lubang lainnya.
- Setelah proses tersebut selesai dan melepaskan memori yang digunakannya, memori tersebut akan digabungkan lagi ke set lubang.
Sebelumnya telah dibahas mengenai jenis-jenis memori yang ada di dalam komputer, seperti main memory, register dan secondary storage. Dalam banyak kasus informasi yang telah diproses disimpan dalam format yang terbaca oleh mesin, sehingga mungkin saja diakses pada suatu waktu. Informasi tersebut biasanya disimpan dalam sebuah media penyimpanan magnetik ataupun optik.
HARDDISK
Harddisk memiliki prinsip kerja yang sama dengan Floppy Disk dan juga memiliki fungsi sebagai penyimpan data. Yang membedakan antara Harddisk dan Floppy Disk adalah bentuk fisik dan kapasitas penyimpanan data serta kecepatan aksesnya. Sesuai dengan namanya (Hard yang berarti keras), media penyimpanan data dalam harddisk menggunakan media logam dan dapat terdiri dari beberapa plat sehingga mampu menyimpan data yang lebih banyak.
Tabel 1 Kapasitas penyimpanan
Gambar 1 Harddisk
Komponen-komponen dari harddisk :
- Piringan logam hitam (platter) yang berfungsi sebagai tempat penyimpanan data. Jumlah piringan ini beragam, mulai 1, 2, 3 atau lebih. Piringan ini diberi lapisan bahan magnetis yang sangat tipis (ketebalan dalam orde persejuta inci). Pada saat ini digunakan teknologi thin film (seperti pada prosesor) untuk membuat lapisan tersebut. Head berupa kumparan.
- Head pada harddisk berbeda dengan head pada tape. Pada tape proses baca tulis (rekam) menggunakan dua head yang berbeda, sedangkan pada haraddisk proses baca dan tulis menggunakan head yang sama. Harddisk biasanya mempunyai head untuk setiap sisi-sisi platter, untuk harddisk dengan dua platter dan dapat memiliki 4 head, harddisk dengan tiga platter dapat memiliki sampai enam platter. Tetapi tidak berarti harddisk dengan 16 head harus memiliki 8 platter. Dan ini dikenal dengan istilah translasi.
Gambar 2 Karakteristik harddisk
Kinerja harddisk berhubungan dengan kecepatannya dalam proses transfer data. Berikut ini beberapa parameter yang menentukan kinerja harddisk :
1. Kecepatan Putar (RPM)
Untuk harddisk dikenal beberapa sistem yang ukuran RPM-nya sebagai berikut:
Tabel 2 Ukuran RPM
2. Seek Time
Seek time adalah jumlah waktu yang diperlukan oleh lengan penggerak (actuator arm) untuk menggerakkan head baca/ tulis dari dari track ke track lain. Nilai yang diambil adalah nilai rata-ratanya yang dikenal dengan average seek time, karena pergerakan head dapat hanya berupa pergerakan dari satu track ke track sebelahnya atau mungkin juga gerakan dari track terluar menuju ke track terdalam. Seek time dinyatakan dalam satuan millisecond (ms). Nilai seek time dari track yang bersebelahan sekitar 2 ms, sedang seek time dari ujung ke ujung bisa mencpai 20 ms. Average seek time umumnya berkisar antara 8 sampai 14 ms.
3. Head Switch Time
Telah disebutkan sebelumnya, seluruh head bergerak secara bersamaan, tetapi hanya ada satu head saja yang dapat membaca pada saat yang sama. Head switch time dinyatakan dalam satuan ms, mempresentasikan berapa lama rata-rata waktu yang diperlukan untuk mengaktifkan suatu head setelah menggunakan head yang lain.
4. Cylender Switch Time
Mirip dengan head switch time, cylinder switch time berlaku untuk pergerakan silinder dan track.
a. Rotational latency
Setelah head digerakkan ke suatu track yang diminta, head akan menunggu piringan berputar sampai sektor yang akan dibaca berada tepat di bawah head. Waktu tunggu inilah yang dikenal dengan rotational latency. Harddisk dengan putaran piringan yang semakin cepat akan memperkecil rotational latency, tapi makin cepat piringan berutar akan menyebabkan harddisk akan lebih cepat panas
Tabel 3 Ukuran RPM
b. Data Access Time
Didefinisikan sebagai waktu yang diperlukan untuk menggerakkan head dan menemukan sector yang dimaksud. Ini merupakan gabungan dari seek time, head switch time dan rotational latency. Data access time dinyatakan dalam satuan ms.
c. Transfer Rate
Didefinisikan sebagai kecepatan transfer data antara harddisk dengan CPU. Makin tinggi kecepatan transfer maka proses pembacaan atau penulisan akan berlangsung lebih cepat. Transfer rate dinyatakan dalam Megabyte per detik (MB/s).
Transfer rate ditentukan juga dengan sistem pemetaan yang digunakan di harddisk. Ada tiga macam tipe pemetaan, yang pertama adalah vertical, kedua adalah horizontal sedangkan yang ketiga adalah campuran. Pada sistem pemetaan vertikal, penempatan data akan dilakukan dengan menghabiskan kapasitas satu silinder terlebih dahulu baru kemudian bergerak ke silinder berikutnya. Pada sistem pemetaan horisontal pemetaan data dilakukan berdasarkan head, sedangkan pada sistem pemetaan campuran digunakan kombinasi silinder dan head.
d. Data Throughput Rate
Parameter ini merupakan kombinasi dari data access time dan transfer rate. Di definisikan sebagai banyaknya data yang dapat diakses oleh CPU dalam satuan waktu tertentu. Data throughput rate tidak hanya dipengaruhi oleh harddisk, tetapi juga oleh CPU dan komponenkomponen lain.
Parameter ini merupakan kombinasi dari data access time dan transfer rate. Di definisikan sebagai banyaknya data yang dapat diakses oleh CPU dalam satuan waktu tertentu. Data throughput rate tidak hanya dipengaruhi oleh harddisk, tetapi juga oleh CPU dan komponenkomponen lain.
MAGNETIC TAPE
Suatu media perekam terdiri dari tape yang tipis dengan lapisan bahan magnetis yang bagus, digunakan untuk merekam data analog atau data digital. Data disimpan dalam frame. Frame dikelompokkan ke dalam blok atau record terpisah. Magnetic tape adalah suatu media akses serial, serupa untuk kaset audio, dan juga data (seperti nyanyian pada tape musik) tidak bias ditempatkan dengan cepat.
Gambar 3 Mekanisme penyimpanan magnetic tape
FLOPPY DISK
Floppy disk yang menjadi standar pemakaian terdiri dari 2 ukuran yaitu ukuran 5,25 inci dan 3,50 inci yang masing-masing ukuran memiliki 2 tipe kapasitas yaitu kapasitas Double Density (DD)
Gambar 4 Floppy disk
Disket diputar pada kecepatan 300 (double density) atau 360 rpm (high density). Sewaktu disk berputar, head dapat bergerak keluar atau ke dalam sekitar 1 inci, menulis sekitar 40 atau 80 track. Head merekam dengan menggunakan metoda tunnel erasure, yaitu track akan diisi dan sisi track yang bersebelahan akan dihapus untuk mencegah pencampuran.
Gambar 5 Floppy disk 3 ½ high-density menunjukkan Track dan Sector
OPTICAL DISK
Mulai tahun 1983 sistem penyimpanan data optical disk mulai diperkenalkan dengan diluncurkannya Digital Audio Compatc Disk. Setelah itu mulai berkembanglah teknologi penyimpanan pada optical disk ini.
Gambar 6 Campact disk
Gambar 7 Perekaman CD-ROM
Baik CD-Audio maupun CD-ROM memakai teknologi yang sama, yaitu sama terbuat dari resin (polycarbonate), dan dilapisi oleh permukaan yang sangat reflektif seperti alumunium.
Informasi direkam secara digital sebagai lubang-lubang mikroskopik pada permukaan yang reflektif. Proses ini dilakukan dengan menggunakan laser yang berintensitas tinggi. Permukaan yang berlubang mikroskopik ini kemudian dilapisi oleh lapisan bening. Informasi dibaca dengan menggunakan laser berintensitas rendah yang menyinari lapisan bening tersebut sementara motor memutar disk. Intensitas laser tersebut berubah setelah mengenai lubang-lubang tersebut kemudian terefleksikan dan dideteksi oleh fotosensor, yang kemudian dikonversikan menjadi data digital.
DVD-ROM
DVD-ROM (digital versatile disc-ROM atau digital video disc-ROM) adalah disk yang berkapasitas tinggi mampu menyimpan 4.7 GB sampai 17 GB, harus mempunyai drive DVDROM atau DVD player untuk membaca DVD-ROM dan menyimpan basisdata, musik, perangkat lunak kompleks, dan gambar hidup.
Tabel 4 DVD device
maaksij min
BalasHapusalat buka lcd